
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Implementation of A* and BFS On Swarm Robotics

Using Unity Game Engine

Edbert Eddyson Gunawan - 13522039

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail (gmail): bryan.rich0604@gmail.com

Abstract— This paper presents an implementation of swarm

robotics using A* and Breadth-First Search (BFS) algorithms to

solve uncharted mazes in the Unity game engine. Swarm robotics,

inspired by the collective behavior of social insects, offers robust

and scalable solutions for complex tasks. We explore the

application of two distinct pathfinding algorithms, A* and BFS,

within a simulated environment, emphasizing collision avoidance

and dynamic path recalculation. The Unity game engine serves as

the development platform due to its powerful simulation

capabilities and ease of use. Our approach demonstrates how these

algorithms can be effectively utilized in swarm robotics to navigate

and solve maze-like environments, ensuring efficient pathfinding

and collision-free navigation.

Keywords—Algorithm, A*, BFS, Unity, Swarm Robotics

I. INTRODUCTION

Swarm robotics is a field of multi-robot systems inspired by
the behavior of natural swarms, such as ants and bees. These
systems leverage simple individual behaviors to achieve
complex group tasks, offering advantages in terms of robustness,
scalability, and flexibility. In pathfinding and navigation, swarm
robotics can significantly enhance the efficiency and
effectiveness of solving problems in dynamic and unknown
environments.

Pathfinding is a fundamental aspect of robotics and artificial
intelligence, crucial for navigation and exploration tasks. A* and
BFS are two widely used algorithms in this domain. A* is known
for its efficiency and optimality, utilizing heuristics to guide the
search process. BFS, on the other hand, guarantees the shortest
path in an unweighted grid but can be computationally intensive.

This paper investigates the implementation of A* and BFS
algorithms for swarm robotics in Unity, focusing on maze-
solving scenarios. Unity provides a versatile and interactive
platform for developing and testing complex simulations,
making it an ideal choice for this study. By integrating these
algorithms into a swarm robotic system, we aim to demonstrate
how collaborative robots can effectively navigate and solve
mazes, avoiding collisions and dynamically adapting to changes
in the environment.

II. THEORETICAL FRAMEWORK

A. Swarm Robotic

Swarm robotics based from the collective behaviours
observed in nature. It represents numerous simple agents
collaborate autonomously to accomplish intricate tasks without
centralized control. This approach leverage several key
principles that underlie its effectiveness in various application.
First the decentralitation allowed no single agents control the
entire swarm. This promotes greater flexibility and robustness as
each agent can respond independently to environtmental stimuli
and collaborate with neighboring agents to achieve common
goals just like in natural herds [2].

B. A* Algorithm

The A* algorithm, a heuristic-based search method, presents
a compelling approach for solving pathfinding problems
efficiently. By integrating heuristic approach and exact cost, A*
achieves a balanced exploration of potential paths while
maintaining optimality. In order to calculate the cost function

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) (1)

where g(n) denotes the cost from the start node to the current
node, and h(n) represents an estimated cost from the current
node to the goal. Through a systematic exploration of nodes
guided by this cost function, A* efficiently navigates through a
graph, identifying the shortest path from a starting node to a goal
node.

Furthermore the advantage of using this algorithm is its
efficiency in finding the shortest path, particularly in weighted
grids, and flexibility in adjusting the heuristic for different
scenarios.

C. BFS Algorithm

The Breadth-First Search (BFS) algorithm is a methodical

approach used to explore graphs or trees. Unlike other search

algorithms, such as Depth-First Search (DFS), BFS prioritizes

exploring nodes at the present depth level before moving on to

nodes at deeper levels. This is achieved by utilizing a queue data

structure, where nodes are systematically added and explored

based on their proximity to the starting point. In essence, BFS

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

systematically expands outward from the starting node,

exploring all neighboring nodes at each level before proceeding

to deeper levels of the graph or tree.

One of the primary advantages of BFS is its ability to

guarantee finding the shortest path in unweighted grids or

graphs. This characteristic makes BFS particularly suitable for

scenarios where the goal is to find the shortest path from a

starting point to a target node. Additionally, BFS is relatively

simple to implement and understand, making it a reliable choice

for solving certain types of problems efficiently and accurately.

III. PROPOSED SCHEME

These are the configurations that need to be implemented.

A. Environtment

In order to create the simulation, the writer utilize Unity as a
mean to create the simulation. There are

• Grid-Based Maze: A grid-based maze is created in Unity,
represented as a 2D array where each cell can be free
(walkable) or blocked (non-walkable). The maze
environment serves as the testbed for the pathfinding
algorithms.

• Robots: Multiple robots (agents) are instantiated in the
maze, each with a unique start and target position. These
robots will navigate the maze using the selected
pathfinding algorithm.

B. Pathfinding Algorithm

• A Algorithm*: Implemented to calculate the optimal path
from the start to the target position using a heuristic
function. The algorithm considers the cost of movement
and heuristic estimates to guide the search. The A*
algorithm is designed to be efficient and provide near-
optimal paths.

• BFS Algorithm: Implemented to explore all possible
paths systematically from the start to the target position,
ensuring the shortest path in an unweighted grid. BFS is
used for its simplicity and reliability in certain scenarios.

C. Collision Avoidance

Since the robots act as a swarm agent, thus we would need
to impose a mechanism to not allowed collision between agents.

• Grid Management: A GridManager class is implemented
to manage occupied positions, ensuring robots do not
collide with each other. Each robot recalculates its path
dynamically to avoid occupied cells, ensuring safe
navigation through the maze.

• Dynamic Recalculation: Robots recalculate their paths at
each step using the selected algorithm (A* or BFS),
adjusting to the current state of the grid and the positions
of other robots. This dynamic recalculation is crucial for
avoiding collisions and ensuring smooth navigation.

IV. IMPLEMENTATION

Following the Proposed Scheme, these are the
implementation for each of the

A. Environment

• Grid-Based Maze

Figure 1. Maze

The environment is implemented using a matrix of integer

with size 10x10 in a GridManager Class. As shown in the

Figure. The black square represents blocked area or walls, the

green box determines the starting position (0,0), the yellow box

represents the target position (9, 9), and the three white circle

represents the agents or robots used. Based on this, the purpose

of this simulation is to find the shortest distance from starting

point to target point without colliding on multiple agents.

Furthermore, in this environment, we implement

GridRenderer class to render the sprites used for the scene.
GridManager.cs

using System.Collections.Generic;
using UnityEngine;

public class GridManager : MonoBehaviour
{
 public int[,] grid;
 public int width = 10;
 public int height = 10;

 private HashSet<Vector2Int> occupiedPositions =
new HashSet<Vector2Int>();

 void Awake()
 {
 grid = new int[width, height];
 InitializeGrid();
 }

 void InitializeGrid()
 {
 // Set obstacles in the grid
 grid[5, 0] = 1;
 grid[5, 1] = 1;
 grid[0, 0] = 2;
 grid[9, 9] = 3;
 grid[1, 2] = 1;
 // grid[2, 2] = 1;
 // grid[3, 2] = 1;

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

 grid[4, 2] = 1;
 grid[1, 5] = 1;
 grid[3, 5] = 1;
 grid[4, 6] = 1;
 }

 public bool IsPositionOccupied(Vector2Int
position)
 {
 return occupiedPositions.Contains(position)
|| grid[position.x, position.y] == 1;
 }

 public void OccupyPosition(Vector2Int position)
 {
 occupiedPositions.Add(position);
 }

 public void ReleasePosition(Vector2Int
position)
 {
 occupiedPositions.Remove(position);
 }
}

GridRenderer.cs

using UnityEngine;

public class GridRenderer : MonoBehaviour
{
 public int[,] grid;
 public int width;
 public int height;
 public GameObject cellPrefab;
 public Sprite freeCellSprite;
 public Sprite obstacleSprite;
 public Sprite startPositionSprite;
 public Sprite targetPositionSprite;

 public float cellSize = 1f; // Fixed cell size

 private void Start()
 {
 GridManager gridManager =
FindObjectOfType<GridManager>();
 if (gridManager == null)
 {
 Debug.LogError("GridManager not found
in the scene.");
 return;
 }

 grid = gridManager.grid;
 width = gridManager.width;
 height = gridManager.height;

 RenderGrid();
 }

 void RenderGrid()
 {
 for (int x = -1; x <= width; x++)
 {
 for (int y = -1; y <= height; y++)
 {
 Vector3 position = new Vector3(x *
cellSize, y * cellSize, 0);
 GameObject cell =
Instantiate(cellPrefab, position,
Quaternion.identity, transform);

 SpriteRenderer renderer =
cell.GetComponent<SpriteRenderer>();

 if(!(x == -1 || x == width || y ==
-1 || y == height))
 {

 if (grid[x, y] == 0)
 {
 renderer.sprite =
freeCellSprite;
 }
 else if (grid[x, y] == 1)
 {
 renderer.sprite =
obstacleSprite;
 }
 else if (grid[x, y] == 2)
 {
 renderer.sprite =
startPositionSprite;
 }
 else if (grid[x, y] == 3)
 {
 renderer.sprite =
targetPositionSprite;
 }
 }
 else
 {
 renderer.sprite =
obstacleSprite;
 }
 // Ensure the sprite fits the cell
size
 int size = 5;
 cell.transform.localScale = new
Vector3(cellSize/size, cellSize/size, 1/size);
 }
 }
 }
}

• Robots

Figure 2. Robot

In order to mimic the movement of an individual in a swarm

of insects, each robots have their own function to determine the

target position, to check for neighboring robots, and to avoid

collisions when moving in a particular path. This then

implemented in RobotController class.
RobotController.cs

using System.Collections.Generic;
using UnityEngine;

public class RobotController : MonoBehaviour
{
 public Vector2Int startPosition;
 public Vector2Int targetPosition;
 public float speed = 5f;
 private List<Vector2Int> path;
 public int idRobot;
 private int pathIndex = 0;

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

 private AStarPathfinding astar;
 private BFSPathfinding pathfinder;
 private GridManager gridManager;
 private bool shouldMove = true; // Flag to
control movement
 private bool iterate = true;

 void Start()
 {
 // pathfinder =
GetComponent<AStarPathfinding>();
 pathfinder =
GetComponent<BFSPathfinding>();
 gridManager =
FindObjectOfType<GridManager>();

 if (pathfinder == null)
 {
 Debug.LogError("AStarPathfinding
component not found on the robot.");
 return;
 }

 if (gridManager == null)
 {
 Debug.LogError("GridManager not found
in the scene.");
 return;
 }

 // Set initial position
 transform.position = new
Vector3(startPosition.x, startPosition.y, 0);
 gridManager.OccupyPosition(startPosition);

 RecalculatePath();
 }

 void Update()
 {
 Vector3 targetPosition = new
Vector3(path[pathIndex].x, path[pathIndex].y, 0);
 transform.position =
Vector3.MoveTowards(transform.position,
targetPosition, speed * Time.deltaTime);

 if (shouldMove && path != null && pathIndex
< path.Count)
 {
 if
(Vector3.Distance(transform.position,
targetPosition) < 0.1f)
 {
 // check if next is occupied or not
 if(iterate)
 {
 if
(gridManager.IsPositionOccupied(new
Vector2Int(path[pathIndex].x, path[pathIndex].y)))
 {
 shouldMove = false;
 }
 else
 {
 shouldMove = true;
 }
 }
 // Release the old position

gridManager.ReleasePosition(startPosition);

 // Update start position to the
current path index
 startPosition = path[pathIndex];

 // Occupy the new position

gridManager.OccupyPosition(startPosition);

 pathIndex++;

 }
 }
 if(iterate)
 {
 // Recalculate path for the next step
 RecalculatePath();
 }
 }

 void RecalculatePath()
 {
 if (startPosition.x == targetPosition.x &&
startPosition.y == targetPosition.y)
 {
 shouldMove = false;
 iterate = false;
 }

if(gridManager.IsPositionOccupied(targetPosition)
&& targetPosition != null)
 {
 Debug.Log("salah masuk");
 if (!gridManager.IsPositionOccupied(new
Vector2Int(targetPosition.x - 1,
targetPosition.y)))
 {
 targetPosition.x--;
 }
 else
if(!gridManager.IsPositionOccupied(new
Vector2Int(targetPosition.x, targetPosition.y-1)))
 {
 targetPosition.y--;
 }
 }
 else
 {
 Debug.Log("Masuk sini benar euy!");
 path =
pathfinder.FindPath(startPosition, targetPosition,
gridManager.grid);
 pathIndex = 1; // for BFS
 // pathIndex = 0; // for A*
 foreach(var x in path)
 {
 Debug.Log(x);
 }
 if (path == null || path.Count == 0)
 {
 shouldMove = false; // Stop
movement if no valid path is found
 Debug.LogError("Path not found or
blocked.");
 }
 }
 }
}

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

B. A* algorithm

Two critical components of the A* algorithm are the
determination of the heuristic function ℎ(𝑛) and the cost function
𝑔(𝑛)g(n). The heuristic function ℎ(𝑛) is computed using the
Manhattan distance, which is the sum of the absolute differences
in the horizontal and vertical coordinates from the current
position to the target position. The cost function 𝑔(𝑛) represents
the cumulative distance from the start position to the current
position.

In our implementation, the valid movements for each step
are defined as transitions to the adjacent cells: (0, 1), (1, 0), (0, -
1), and (-1, 0). Additionally, for each potential move, the
algorithm verifies whether the target position is free or occupied.
This validation step is crucial as it ensures that the robots avoid
collisions and maintain smooth navigation within the maze.

Astar.cs

using System.Collections.Generic;
using UnityEngine;

public class AStarPathfinding : MonoBehaviour
{
 public class Node
 {
 public Vector2Int position;
 public int gCost;
 public int hCost;
 public Node parent;

 public int FCost { get { return gCost +
hCost; } }

 public Node(Vector2Int pos)
 {
 position = pos;
 }
 }

 public List<Vector2Int> FindPath(Vector2Int
start, Vector2Int target, int[,] grid)
 {
 GridManager gridManager =
FindObjectOfType<GridManager>();

 List<Node> openList = new List<Node>();
 HashSet<Node> closedList = new
HashSet<Node>();
 Node startNode = new Node(start);
 Node targetNode = new Node(target);
 openList.Add(startNode);

 while (openList.Count > 0)
 {
 Node currentNode = openList[0];
 for (int i = 1; i < openList.Count;
i++)
 {
 if (openList[i].FCost <
currentNode.FCost ||
 openList[i].FCost ==
currentNode.FCost && openList[i].hCost <
currentNode.hCost)
 {
 currentNode = openList[i];
 }
 }

 openList.Remove(currentNode);
 closedList.Add(currentNode);

 if (currentNode.position ==
targetNode.position)
 {
 return RetracePath(startNode,
currentNode);
 }

 foreach (Vector2Int direction in
GetDirections())
 {
 Vector2Int neighborPos =
currentNode.position + direction;
 if (!IsValidPosition(neighborPos,
grid) || grid[neighborPos.x, neighborPos.y] == 1 ||
gridManager.IsPositionOccupied(neighborPos))
 {
 continue;
 }

 Node neighborNode = new
Node(neighborPos);
 if
(closedList.Contains(neighborNode))
 {
 continue;
 }

 int newMovementCostToNeighbor =
currentNode.gCost + GetDistance(currentNode,
neighborNode);
 if (newMovementCostToNeighbor <
neighborNode.gCost
|| !openList.Contains(neighborNode))
 {
 neighborNode.gCost =
newMovementCostToNeighbor;
 neighborNode.hCost =
GetDistance(neighborNode, targetNode);
 neighborNode.parent =
currentNode;

 if
(!openList.Contains(neighborNode))
 {
 openList.Add(neighborNode);
 }
 }
 }
 }

 return null; // No valid path found
 }

 List<Vector2Int> RetracePath(Node startNode,
Node endNode)
 {
 List<Vector2Int> path = new
List<Vector2Int>();
 Node currentNode = endNode;

 while (currentNode != startNode)
 {
 // Debug.Log("STUCK IN THE FIRST
WHILE");
 path.Add(currentNode.position);
 currentNode = currentNode.parent;
 }
 path.Reverse();

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

 return path;
 }

 int GetDistance(Node a, Node b)
 {
 int dstX = Mathf.Abs(a.position.x -
b.position.x);
 int dstY = Mathf.Abs(a.position.y -
b.position.y);
 return dstX + dstY;
 }

 bool IsValidPosition(Vector2Int pos, int[,]
grid)
 {
 return pos.x >= 0 && pos.x <
grid.GetLength(0) && pos.y >= 0 && pos.y <
grid.GetLength(1);
 }

 List<Vector2Int> GetDirections()
 {
 return new List<Vector2Int>
 {
 new Vector2Int(0, 1),
 new Vector2Int(1, 0),
 new Vector2Int(0, -1),
 new Vector2Int(-1, 0)
 };
 }
}

C. BFS Algorithm

In BFS, the algorithm would find the shortest distance by
checking possible steps. Then it will iterate by checking every
depth one by one until the target is found.

The valid step would be (0, 1), (1, 0), (0, -1), (-1, 0)
Furthermore, for each step, we check if the targeted position is
available or occupied. This ensures that collision will not occur.

BFSPathfinding.cs

using System.Collections.Generic;
using UnityEngine;

public class BFSPathfinding : MonoBehaviour
{
 public class Node
 {
 public Vector2Int position;
 public Node parent;

 public Node(Vector2Int pos)
 {
 position = pos;
 }
 }

 public List<Vector2Int> FindPath(Vector2Int
start, Vector2Int target, int[,] grid)
 {
 GridManager gridManager =
FindObjectOfType<GridManager>();

 Queue<Node> queue = new Queue<Node>();
 HashSet<Vector2Int> visited = new
HashSet<Vector2Int>();
 Node startNode = new Node(start);

 queue.Enqueue(startNode);
 visited.Add(start);

 while (queue.Count > 0)
 {
 Node currentNode = queue.Dequeue();

 if (currentNode.position == target)
 {
 return RetracePath(startNode,
currentNode);
 }

 foreach (Vector2Int direction in
GetDirections())
 {
 Vector2Int neighborPos =
currentNode.position + direction;
 if (!IsValidPosition(neighborPos,
grid) || grid[neighborPos.x, neighborPos.y] == 1 ||
gridManager.IsPositionOccupied(neighborPos) ||
gridManager.IsPositionOccupied(neighborPos))
 {
 continue;
 }

 if (!visited.Contains(neighborPos))
 {
 visited.Add(neighborPos);
 Node neighborNode = new
Node(neighborPos) { parent = currentNode };
 queue.Enqueue(neighborNode);
 }
 }
 }

 return null; // No valid path found
 }

 List<Vector2Int> RetracePath(Node startNode,
Node endNode)
 {
 List<Vector2Int> path = new
List<Vector2Int>();
 Node currentNode = endNode;

 while (currentNode != startNode)
 {
 path.Add(currentNode.position);
 currentNode = currentNode.parent;
 }
 path.Add(startNode.position); // Add the
start node at the end
 path.Reverse();
 return path;
 }

 bool IsValidPosition(Vector2Int pos, int[,]
grid)
 {
 return pos.x >= 0 && pos.x <
grid.GetLength(0) && pos.y >= 0 && pos.y <
grid.GetLength(1);
 }

 List<Vector2Int> GetDirections()
 {
 return new List<Vector2Int>
 {
 new Vector2Int(0, 1),
 new Vector2Int(1, 0),

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

 new Vector2Int(0, -1),
 new Vector2Int(-1, 0)
 };
 }
}

V. SIMULATION RESULT

A. A* Algorithm

In this simulation, we deployed three robotic agents to

navigate the maze concurrently. The trajectories of these agents

are illustrated with distinct colors: the first robot is represented

by a red line, the second by an orange line, and the third by a

blue line.
Table 1. A* result

Table 1 reveals that the first robot followed the shortest possible

path but stopped just before the target because the target cell

was already occupied by the third robot. Similarly, the second

robot initially followed the shortest path but deviated midway

to avoid collisions with other robots. This behavior was also

observed in the third robot. As the third robot successfully

reached and occupied the target cell, the second robot adjusted

its position to the next available cell.

B. BFS Algorithm

In this simulation, we deployed three robotic agents to

navigate the maze concurrently. The trajectories of these agents

are illustrated with distinct colors: the first robot is represented

by a red line, the second by an orange line, and the third by a

blue line.

Table 2. BFS Result

Table 2 reveals that the first robot followed the shortest possible
path but stopped just before the target because the target cell was
already occupied by the third robot. Similarly, the second robot
initially followed the shortest path but deviated midway to avoid
collisions with other robots. This behavior was also observed in
the third robot. As the third robot successfully reached and
occupied the target cell, the second robot adjusted its position to
the next available cell. However, the second robot is not able to
use the optimal route, since it will pick the first position in the
queue.

C. Simulation Analysis

Both A* and BFS algorithms demonstrated their capability

to find paths to the target positions. Each robot exhibited

individual behavior, adapting to environmental changes by

avoiding collisions and relocating to the next available cell if

the target position was occupied by another robot.

The A* algorithm consistently guided robots to select

optimal paths. However, due to the continuous, frame-based

implementation of robot movement, the robots occasionally

moved diagonally, which was unintended. This indicates a need

for additional constraints or an alternative approach to robot

movement implementation to ensure proper adherence to the

grid-based navigation.

On the other hand, BFS did not consistently produce

optimal paths for the robots. Due to the nature of BFS, which

explores nodes in a first-in, first-out manner, robots sometimes

repeated movements, particularly noticeable in the second

robot, which repeated movements twice at the start and near the

target.

Therefore, A* proves to be a more effective algorithm for

swarm robotics, providing more reliable and optimal

pathfinding compared to BFS.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

VI. CONCLUSION

 This paper outlines the implementation of A* and BFS
pathfinding algorithms for swarm robotics in Unity. By
leveraging Unity's simulation capabilities, we demonstrate
effective collision avoidance and dynamic path recalculation in
a maze-solving scenario. The A* algorithm has shown its ability
to control each robot individually while enabling collaborative
swarm behavior. Conversely, the BFS algorithm sometimes
exhibited repetitive movements due to its inherent exploration
strategy. The proposed scheme offers insights into the practical
application of these algorithms in swarm robotics, highlighting
their strengths and challenges in real-time navigation and
exploration tasks. Future work will explore more complex
environments and advanced coordination strategies to enhance
the robustness and efficiency of swarm robotic systems,
potentially integrating machine learning techniques to improve
pathfinding and decision-making in dynamic and unpredictable
scenarios.

VIDEO LINK AT YOUTUBE

The YouTube video for this paper
https://youtu.be/OP403IRoZdc

ACKNOWLEDGMENT

Praises and gratitude are due to the Almighty for His

blessings and abundant grace, enabling the author to

successfully complete this paper. The author extends sincere

thanks to Dr. Ir. Rinaldi, M.T, the lecturer for the IF2211

Algorithm Strategy course (K01 class), for imparting valuable

knowledge, which greatly contributed to the successful

completion of this paper. Additionally, heartfelt appreciation is

conveyed to the author's parents for their unwavering support

and motivation throughout the process.

REFERENCES

[1] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From
Natuarl to Artificial Systems. Oxford University Press, 1999.

[2] Sahin, E., Labella, T. H., and Trianni, V. (2005). SWARM-BOTS: Swarm
of autonomous mobile robots with self-assembling capabilities. Springer
Tracts in Advanced Robotics, 11, 142-151.

[3] R. Munir, “Penentuan Rute (Route/Path Planning) (Bag.1).” Diakses dari
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Route-
Planning-Bagian1-2021.pdf, pada 1 Juni 2024.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 12 Juni 2024

Edbert Eddyson Gunawan, 13522039

https://youtu.be/OP403IRoZdc

